1. Cреда разработки R: сведения из истории. установка и запуск пакета. 2. Программируем в R. первые шаги. 3. Построение графиков в среде R. 4. Ввод данных и работа с файлами в среде R. 4.1. Работа с одномерными массивами данных. 4.2. Работа с матрицами и таблицами данных. 5. Проверка статистических гипотез в среде R. 5.1. Проверка гипотезы о законе распределения вероятностей случайной величины (критерий Хи-квадрат Пирсона). 5.2. Проверка гипотезы о независимости признаков с качественной группировкой (критерий Хи-квадрат Пирсона). 5.3. Проверка гипотезы о равенстве математических ожиданий нормальных генеральных совокупностей (критерий Стьюдента). 5.4. Проверка гипотезы о равенстве дисперсий нормальных генеральных совокупностей (критерий Фишера). 6. Задача построения модели однофакторной линейной регрессии. Прогнозирование. 7. Задача многожественной линейной регрессии. 7.1. Задача однофакторной линейной регрессии как частный случай множе-ственной регрессии. 7.2. Исследование зависимости переменной отклика от фактора в регресси-онной модели. 8. Задача классификации, подходы к её решению. 8.1. Логистическая регрессия. 8.2. Линейный дискриминантный анализ. 8.3. Деревья решений - принцип "разделяй и властвуй" ("divide and con-quer"). 9. Нейронные сети (neural networks) и их применение в машинном обучении. 10. Опорные векторы, метод опорных векторов ("support vector machines", SVM) в машинном обучении. 11. Рекомендательные системы ("recommendation system"), их назначение, построение, применение. 12. Специальные задачи машинного обучения.
Краткое наименование: Анализ данных в среде R
Образовательная организация: Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет"
Тип ресурса:
Дисциплина (раздел, модуль) программы высшего образования
Целевая аудитория:
Специалисты
Дисциплина Инженерные науки
Ваш комментарий
Комментировать статью может любой авторизованный пользователь
Пожалуйста авторизуйтесь и добавьте первый комментарий